Разница между Business Intelligence и Data Science

Разница между Business Intelligence и Data Science
Mr. Pixel
Mr. Pixel
16 сентября
0
1 203

Модные словечки, востребованная терминология, не совсем понятные определения и совершенно незнакомые лексические единицы. Все вышеуказанное можно применить как к понятию «business intelligence», так и к словосочетанию «data science». Попробуем не только преодолеть трудности перевода, но и разобраться в том, чем разнятся «наука о данных» и «бизнес интеллект».

Business Intelligence: интеллект, разведка, осмысление, аналитика

Многие уверены, что термин «business intelligence» впервые появился на свет в 80-х гг. прошлого столетия, но это не совсем так. Дело в том, что первым этот термин использовал Ханс Питер Лун, исследователь из компании IBM, в далеком 1958 году. А в 1989-ом Говард Дреснер, который позже стал аналитиком в Gartner, дал определение «business intelligence» как тому, что описывает «концепции и методы для улучшения принятия бизнес-решений с использованием систем на основе бизнес-данных».

Business-Intelligence

Давайте прислушаемся к другим экспертам. Так, Джонатан Ву, менеджер компании Netgear, определяет BI как процесс сбора многоаспектной информации о предмете, который исследуется. А вот какую трактовку предложил Институт хранилищ данных (The Data Warehousing Institute): Business intelligence – это процесс превращения данных в знания, а знаний в бизнес-действия для получения выгоды.

BI можно рассматривать не только как процесс, но и как результат процесса получения знаний. Однако если компилировать все определения, которые «дрейфуют» на рынке, можно утверждать, что business intelligence в самом широком смысле этого понятия – это процесс превращения полученных данных в знания о бизнесе, которые используются для принятия улучшенных решений. Кроме того, это еще и информационные технологии сбора данных и их консолидации. И, наконец, BI представляет собой знания о бизнесе, которые добываются путем проведения углубленного анализа данных. Если говорить коротко, то business intelligence – это технологии, анализ и знания.

Data Science: наука о хаосе, приведенном в порядок

С недавних пор наука о данных рассматривается не только как академическая дисциплина, но и как практическая межотраслевая сфера деятельности. Сам термин был предложен Уильямом Кливлендом, профессором университета Пердью, который считается одним из самых больших авторитетов в области статистики, машинного обучения и визуализации данных.

data_science

Согласно определению международного совета CODATA (International Council for Science: Committee on Data for Science and Technology), наука о данных представляет собой дисциплину, которая объединяет различные направления статистики, data mining и машинное обучение. Однако наиболее популярное определение дано в статье «Что такое Data Science?» Майка Лукидиса, редактора O'Reilly Media и автора книг об операционных системах, компьютерной архитектуре и программировании. Стоит отметить, что данная трактовка на сегодняшний день является основополагающей. Data Science – это обобщенное название технологий, которые предназначены для производства данных как продукта. Если сравнивать науку о данных с традиционной статистикой, то на первый взгляд может показаться, что между ними нет никаких отличий. Однако Data Science характеризуется комплексным подходом, а data-ученые не изучают данные, а используют их.

Таким образом, мы приходим к выводу, что Data Science изучает проблемы анализа, обработки и использования данных. Это такое фантастическое «ассорти», от которого голова идет кругом: здесь вам и статистика, и интеллектуальный анализ данных, и искусственный интеллект, обрабатывающий большие объемы data, и методы проектирования баз данных, и многое другое.

Ничто не ново под… data-небосводом

Облачные вычисления и другие технические достижения заставили компании сосредоточиться больше на будущем, а не анализировать отчеты на основании данных прошлого. Чтобы получить конкурентные преимущества, компании начали объединять и преобразовывать данные, которые являются частью реальной науки о данных.

В то же время они практикуют Business Intelligence, создавая графики, отчеты и таблицы на базе полученных данных. И хотя между Data Science и Business Intelligence есть большие различия, они в равной степени важны и дополняют друг друга.

Fotolia_48679747_L

Для того чтобы практиковать BI и Data Science, многие компании нанимают специалистов, которые совмещают сразу две должности – BI-аналитиков и дата-сайентистов. Тем не менее, именно здесь и возникает путаница из-за непонимания того, что эти роли требуют различных экспертных знаний.

Несправедливо ожидать, что BI-аналитик может сделать точные бизнес-прогнозы. А это может стать причиной катастрофических последствий для любой компании. Однако, изучив главные различия между BI и наукой о данных, можно научиться подбирать подходящих кандидатов для выполнения определенных задач, которые намерен решить ваш бизнес.

Сфера интересов

С одной стороны, традиционный подход Business Intelligence подразумевает создание инструментальных панелей для отображения исторических данных в соответствии с фиксированным набором ключевых показателей эффективности. Отсюда делаем вывод, что BI больше полагается на отчеты, современные тренды и ключевые показатели эффективности (KPI).

business_intelligence

С другой стороны, наука о данных больше фокусируется на предсказании того, что в конечном итоге может случиться в будущем. Таким образом, дата-сайентисты больше сосредоточены на изучении закономерностей и различных моделей, а также на нахождении корреляций для бизнес-прогнозов.

data_analysis_shutterstock_138550073-1024x1024-1024x1024

Например, компаниям, занимающимся корпоративным тренингом, нужно предсказывать растущую потребность в новых видах обучения, основываясь на существующих шаблонах и требованиях корпоративных компаний.

Анализ и качество данных

BI требует от аналитиков умения сосредотачиваться не только на настоящем и будущем, но и заглядывать в прошлое – то есть активно использовать исторические данные. Поэтому анализ BI-аналитиков является в большей степени ретроспективным. Фокус Business Intelligence – это абсолютно точные данные, основанные на том, что на самом деле произошло в прошлом.

Business-Intelligence64566

Например, ежеквартальные результаты компании формируются из реальных данных о ведении бизнеса на протяжении последних трех месяцев. Ошибки в этом случае попросту невозможны, потому что отчетность носит описательный характер и не может быть субъективной.

Что касается науки о данных, то дата-сайентисты должны использовать предиктивную и директивную аналитику. Они обязаны довольно точно предсказывать то, что должно произойти в будущем, используя вероятности и уровни уверенности.

maxresdefault

То, как компания будет выполнять необходимые действия на основе предиктивного анализа и прогнозов на будущее, не может базироваться на простых догадках. Конечно, наука о данных не может быть точной на 100%, но она должна быть «достаточно хороша» для бизнеса, чтобы принимать своевременные решения и действия, а также обеспечивать необходимые результаты.

Идеальный пример науки о данных в действии – оценка прибыли компании в следующем квартале.

Источники и преобразование данных

Business Intelligence – это заблаговременное планирование и подготовка к использованию правильной комбинации источников данных для их преобразования. Чтобы получить соответствующие инсайты о клиентах, деловых операциях и продуктах, Data Science в состоянии на лету преобразовывать данные, используя те источники информации, которые доступны по требованию.

meraevents.com-4

Потребность в смягчении

BI-аналитики не должны смягчать любые неопределенности, окружающие исторические данные, так как они основаны на реальных ситуациях. Такие данные точны и не предполагают каких-либо вероятностей.

Machine-Learning

А вот в случае науки о данных существует необходимость смягчения разного рода неопределенностей. Для этого дата-сайентисты используют различные аналитики и методы визуализации, которые помогают выявить неопределенности в данных. В конечном счете, они используют соответствующие методы преобразования данных для их конвертирования в работоспособный формат, который можно легко объединить с другими источниками данных.

Процесс

При помощи BI процесс преобразования данных не может быть мгновенным – это довольно медленная процедура, включающая предварительное планирование и сравнительный анализ. Этот процесс повторяется ежемесячно, ежеквартально или ежегодно, потому такую аналитику нельзя назвать «многоразовой».

data-science-illustration-­Feature_1290x688_MS

Дата-сайентисты могут мгновенно преобразовывать данные с помощью прогнозных приложений, которые умеют предсказывать будущее на основе определенных комбинаций данных. Это довольно быстрый процесс, который во многом состоит из экспериментирования.

bigstock-Strategic-Journey-43526110

Нужны ли вам отчеты за последние пять лет, или вас интересуют будущие бизнес-модели – BI и наука о данных необходимы для любого бизнеса. А имея представление о том, чем отличаются друг от друга Business intelligence и Data Science, вы сможете принимать более обоснованные решения, которые обязательно приведут к успеху в бизнесе.

При написании статьи были использованы материалы SmartDataCollective, Allen Communication Learning Services, Datafloq

Комментарии к статье (0)